Можливо, ви намагаєтесь звернутися до цього сайту із захищеного браузера на сервері. Увімкніть сценарії та перезавантажте сторінку.
Увімкнення більш доступного режиму
Вимкнення більш доступного режиму
Пропустити команди стрічки
Перейти до основного вмісту
Вимкнути анімацію
Увімкнути анімацію
Увійти
The National Academy of Sciences of Ukraine
Prize of the Verkhovna Rada of Ukraine for young scientists
Work is a contest participant
2016
NAS Ukraine
About NASU
Activity
Apparatus of Presidiumof NASU
Awards
Book
Book Series
Centers for Collective Use of NAS of Ukraine
Colegial
Competition
Department
International cooperation
Members
Messages
Multi-volume
NASUDepartment
Organization
Personal Site
Postgraduate and Doctoral Education
Presidium
Конкурсна робота
Вибрано
Державні нагороди та відзнаки
НАН України
Наукові та науково-популярні заходи НАН України
Наукові та науково-прикладні розробки
Центри колективного користування приладами НАН України
Red
Інформаційне наповнення сайту
bcs
Work
Так
Так
20%,80%
Control of vibrations and model reduction for mechanical systems with elastic plates
Новікова Юлія Вікторівна
Institute of Applied Mathematics and Mechanics
Молодший науковий співробітник
The scientific work is devoted to problems of motion control and stabilization of the mechanical system consisting of a rigid body and a thin elastic plate. A reduction scheme that allows transforming the equations of motion with partial derivatives to an infinite system of ordinary differential equations is proposed. Controllability conditions are obtained for a model in a finite dimensional state space. Conditions of spectral controllability are studied as well. A mathematical model of the Kirchhoff plate with the rotational inertia of its cross section is considered. For such a model, a system of ordinary differential equations with finite numbers of modal coordinates is derived, and the optimal control problem with a quadratic cost is solved. We consider a dynamical system with distributed parameters in order to describe controlled vibrations of the Kirchhoff plate. A class of optimal controls corresponding to its finite-dimensional approximations is used to study the reachable set. Analytic estimates of the norm of these control functions are obtained depending on the boundary conditions. These estimates are used to study the reachable set for the infinite-dimensional system. For a model with incommensurable frequencies, an estimate of the reachable set is obtained under the condition of power decay of the amplitudes of generalized coordinates. Feedback control functionals, depending on the generalized velocities, are con-structed for the system considered. A theorem on the partial asymptotic stability of the equilibrium of the closed-loop system is proved. A mechanical system consisting of a rigid body and an elastic Kirchhoff plate is considered under the action of three independent controls. The equations of motion for a nonlinear model are derived in the form of a system of ordinary and partial differential equations. The operator form of this problem is presented as an abstract differential equation in a Hilbert space. A feedback control law is constructed such that the corresponding infinitesimal generator of the closed-loop system is dissipative. Key words: Kirchhoff plate, controllability, optimal control problem, reachable set, feedback control, asymptotic stability, infinitesimal generator.
©
Інститут програмних систем НАН України
, 2023