Можливо, ви намагаєтесь звернутися до цього сайту із захищеного браузера на сервері. Увімкніть сценарії та перезавантажте сторінку.
Увімкнення більш доступного режиму
Вимкнення більш доступного режиму
Пропустити команди стрічки
Перейти до основного вмісту
Вимкнути анімацію
Увімкнути анімацію
Увійти
The National Academy of Sciences of Ukraine
Grants of the National Academy of Sciences of Ukraine to research laboratories / groups of young scientists of the National Academy of Sciences of Ukraine for conducting research in priority areas of science and technology
Work is a contest participant
2020
NAS Ukraine
About NASU
Activity
Apparatus of Presidiumof NASU
Awards
Book
Book Series
Centers for Collective Use of NAS of Ukraine
Colegial
Competition
Department
International cooperation
Members
Messages
Multi-volume
NASUDepartment
Organization
Personal Site
Postgraduate and Doctoral Education
Presidium
Конкурсна робота
Вибрано
Державні нагороди та відзнаки
НАН України
Наукові та науково-популярні заходи НАН України
Наукові та науково-прикладні розробки
Центри колективного користування приладами НАН України
Red
Інформаційне наповнення сайту
bcs
Work
Так
Так
20%,80%
Actual problems of modern theory of boundary-value problems and theory of approximations
Author (leader) -
Покутний Олександр Олексійович
Institute of Mathematics of NAS of Ukraine
Executant -
Atlasiuk Olena Mykolaivna
Institute of Mathematics of NAS of Ukraine
Executant -
Бондар Іванна Анатоліївна
Institute of Mathematics of NAS of Ukraine
Executant -
Soldatov Vitalii Oleksandrovych
Institute of Mathematics of NAS of Ukraine
Executant -
Stepanyuk Tetiana Anatoliivna
Institute of Mathematics of NAS of Ukraine
Modern science common necessity is a need to develop constructive methods for the study of boundary value problems for operator-differential and evolution equations. Such problems model many physical, technical, economic, and social processes. For the analysis of linear and nonlinear boundary value problems for a wide class of differential, integral, function-differential, integro-differential systems, systems and equations with delay and momentum their development occupies one of the central places within the field of Qualitative theory of differential equations. An important aspect of the theory of boundary value problems for operator-differential and evolution equations is the study of the solvability of such problems with conditions at infinity. Such boundary value problems were previously investigated in the case when the linearized part of the corresponding operators was Fredholm or Fredholm with zero index. Therefore, the study of operator-differential boundary value problems, the linearized part of which is a normal-solvable or generalized normal-solvable operator is a topical issue that requires detailed study. It should be noted that the minimal discrete s-energy has a large number of applications. One example of such applications is the "Thomson problem" (about the minimization of the potential energy of discrete charge systems) and the generalization of this problem, which use the Riesz s-potential. Despite the fact that a large number of works are devoted to the asymptotic decomposition of the Riesz minimum energy, finding the value of the coefficient of the second term is still an important and complex unsolved problem.
©
Інститут програмних систем НАН України
, 2023