Можливо, ви намагаєтесь звернутися до цього сайту із захищеного браузера на сервері. Увімкніть сценарії та перезавантажте сторінку.
Увімкнення більш доступного режиму
Вимкнення більш доступного режиму
Пропустити команди стрічки
Перейти до основного вмісту
Вимкнути анімацію
Увімкнути анімацію
Увійти
The National Academy of Sciences of Ukraine
Grants of the National Academy of Sciences of Ukraine to research laboratories / groups of young scientists of the National Academy of Sciences of Ukraine for conducting research in priority areas of science and technology
Work is the winner of the contest
2020
NAS Ukraine
About NASU
Activity
Apparatus of Presidiumof NASU
Awards
Book
Book Series
Centers for Collective Use of NAS of Ukraine
Colegial
Competition
Department
International cooperation
Members
Messages
Multi-volume
NASUDepartment
Organization
Personal Site
Postgraduate and Doctoral Education
Presidium
Конкурсна робота
Вибрано
Державні нагороди та відзнаки
НАН України
Наукові та науково-популярні заходи НАН України
Наукові та науково-прикладні розробки
Центри колективного користування приладами НАН України
Red
Інформаційне наповнення сайту
bcs
Work
Так
Так
20%,80%
Algebraic and analytical methods in the theory of partial differential equations
Author (leader) -
Vanieieva Olena O.
Institute of Mathematics of NAS of Ukraine
Executant -
Аноп Анна Вікторівна
Institute of Mathematics of NAS of Ukraine
Executant -
Chepurukhina Iryna Serhiivna
Institute of Mathematics of NAS of Ukraine
Executant -
Lokaziuk Oleksandra Viktorivna
Institute of Mathematics of NAS of Ukraine
Executant -
Оксана Романовна Романовна
Institute of Mathematics of NAS of Ukraine
The project is devoted to the development of new modern algebraic and analytical methods for the study of partial differential equations. Regarding algebraic methods, the project will focus on the classification of Lie symmetries in classes of nonlinear partial differential equations that model physical and biological processes. The improved and modified approaches of group analysis of differential equations will be applied to investigate (1+1) - and (2+1) -dimensional nonlinear partial differential equations. These include, in particular, the variable coefficient reaction–diffusion and Fisher equations, Burgers and Klein–Gordon equations. We plan to obtain exhaustive classifications of Lie symmetries for these equations and then to construct their exact solutions. As to analytical tools of the study of multidimensional differential equations, the project participants will aim at the developing of the method of scales of function spaces and at the method of the interpolation of pairs of normed spaces and operators on them. We plan to introduce broad classes of the generalized Sobolev, Nikolskii–Besov, and Triebel–Lizorkin spaces that have interpolation properties with respect to their classical analogs and allow a correct definition on smooth manifolds. We expect to build a new theory of solvability of elliptic differential equations and elliptic boundary-value problems on manifolds in classes of the spaces introduced. A specific attention will be paid to elliptic problems with rough (i.e. irregular) data, specifically to problems with white noise in boundary conditions, which arise in physics and technology.
©
Інститут програмних систем НАН України
, 2023