Можливо, ви намагаєтесь звернутися до цього сайту із захищеного браузера на сервері. Увімкніть сценарії та перезавантажте сторінку.
Увімкнення більш доступного режиму
Вимкнення більш доступного режиму
Пропустити команди стрічки
Перейти до основного вмісту
Вимкнути анімацію
Увімкнути анімацію
Увійти
The National Academy of Sciences of Ukraine
Grants of the National Academy of Sciences of Ukraine to research laboratories / groups of young scientists of the National Academy of Sciences of Ukraine for conducting research in priority areas of science and technology
Work is a contest participant
2020
NAS Ukraine
About NASU
Activity
Apparatus of Presidiumof NASU
Awards
Book
Book Series
Centers for Collective Use of NAS of Ukraine
Colegial
Competition
Department
International cooperation
Members
Messages
Multi-volume
NASUDepartment
Organization
Personal Site
Postgraduate and Doctoral Education
Presidium
Конкурсна робота
Вибрано
Державні нагороди та відзнаки
НАН України
Наукові та науково-популярні заходи НАН України
Наукові та науково-прикладні розробки
Центри колективного користування приладами НАН України
Red
Інформаційне наповнення сайту
bcs
Work
Так
Так
20%,80%
The classification of algebraic and topological structures by methods of group theory and computer algebra
Author (leader) -
Раєвська Марина Юріївна
Institute of Mathematics of NAS of Ukraine
Executant -
Soroka Yuliia Yuriivna
Institute of Mathematics of NAS of Ukraine
Executant -
Plakosh Andriiana Ivanivna
Institute of Mathematics of NAS of Ukraine
Executant -
Раєвська Ірина Юріївна
Institute of Mathematics of NAS of Ukraine
Executant -
Feshchenko Bohdan Hryhorovych
Institute of Mathematics of NAS of Ukraine
The investigation of algebraic and topological structures by methods of group theory and computer algebra is an important field of study in mathematics that has a number of applications. In particular, the research project contains the study of such algebraic structures as nearrings, groups, cohomologies of groups, symmetry groups. Using GAP we plan to construct and investigate some classes of nearrings with identity with a view of classification of such models. The theory of cohomologies of groups was one of the origins of the homological algebra. It was also related to the theory of group extensions and projective representations, where cohomologies arise as factor sets. This theory is widely used in topology, number theory, algebraic geometry. One of the research directions is the study of the symmetry group (homeotopy group is an analogue of the mapping class group) of the Morse function stabilizer and the automorphism group of the Kronrod–Reeb graph defined for this function. Each diffeomorphism of stabilizer of a function induces an automorphism of the Kronrod–Reeb graph, that is, a homomorphism between these groups is defined. The kernel of this homomorphism is a subgroup of stabilizer consisting of diffeomorphisms that induce the identity map on a graph, that is, diffeomorphisms that leave invariant every regular connected component of every level set of the function. The idea of the study is to consider the kernel of this diffeomorphism and to establish an isomorphism between the homeotopy group of stabilizer and some subgroup of automorphisms of the Kronrod–Reeb graph.
©
Інститут програмних систем НАН України
, 2023